

Schlumberger

CO₂ Storage Project Timeline

Pre-Operation Phase

Operation Phase

Post-Injection Phase

Schlumberger

Time

P&R Management Strategy for Well Integrity

Schlumberger

Schlumberger Public

Performance & Risk Assessment - Workflow

Functional Analysis

Construction of Leakage Scenarii

Identification and > quantification of failure mechanisms Risk Ranking & Performance Evaluation

(from US Geological Survey

Exhaustive inventory of features and potential hazards

(from Damen et al, 2003)

Knowledge
Data & Models
Uncertainties

Construction of Leakage Scenarii

System Decomposition

Quantification of failure mechanisms
Leakage rates

Well Integrity Measurements

Corrosion

Schlumberger

- Micro-annulus
- Fractures in the cement sheath

Schlumberger Public

Schlumberger Public

Cement behavior

- -Cement leaching
- -Phase changing
- -Reactive porous mechanics
- -Physico-mechanical coupling
- -Initial state

- -Steel corrosion
- -Steel stability
- -Steel perforation
- -Physico-mechanical coupling
- -Micro-Annulus formation

Transport

- -Transport phenomena (advection + diffusion)
- -Gas migration
- -Porosity, capillary pressure

Deterministic simulation

Probabilistic distribution

Reliability analysis

C

Schlumberger Public

Risk Mapping

P&R Management Strategy for Well Integrity

Actions – Monitoring

Debonding steel/cement interface

Corrosion

1:

1 week

6 weeks

Standard Portland Cements degrade in CO₂ environments

Actions – CO₂-Resistant Materials (Cement)

2 days

1 week

6 weeks

Actions – Material for Squeeze Jobs

Placement of a special material to seal long and thin discontinuities

- Microannulus
- Channels
- Fractures

Well-dispersed micro-cement

Multimodal slurry

Actions – Well Plugging

Plug design

- Material
- Placement
- Monitoring

Action Selection – A Guide to Decision

Conclusion

Performance & Risk Management:

- Provides a framework for CO₂ storage control (Safety and Economics)
 - Selection / Evaluation / Closure
 - Cost effective risk management
 - Support for decision making (including P&L, regulations, image)
 - Communication tool
- Requires integrated tools
 - An assessment methodology
 - Modeling tools
 - Characterization and Monitoring Measurements
- Applies to Well Integrity and beyond

